位置: 主页 > 时光荏苒 > 正文 [ ]

人工智能之于艺术bet36体育: :生机还是陷阱?

作者:唐宇 来源:admin 关注: 时间:2019-06-01 22:36

这是一幅由谷歌公司2005年开源的 AI程序“DeepDream”创作出来的艺术作品。谷歌的另一项利用机器学习创作音乐、艺术作品的项目Project Magenta也发布了一个名为 NSynth (Neural Synthesizer)的神经声音合成器。

时间回溯到20世纪90年代中期的山景城加利福尼亚,当时道格拉斯·艾克还是美国阿尔伯克基市的一个数据库程序员,业余时间则兼职做个音乐人。在能源部的实验室里写了一天的电脑代码之后,他就会在当地的一个小酒吧里表演,演奏他所说的"朋克范儿的蓝草音乐(蓝草音乐,一种乡村音乐)"--他管这叫做"Johnny Rotten遇上 Johnny Cash"(前者是英国朋克摇滚乐团“性手枪”的主唱,后者是美国乡村音乐创作歌手)。但他真正想做的是把自己的主业编程工作和业余的兴趣爱好结合起来,利用机器来创造一种独特的音乐。"将人工智能和音乐结合在一起是我毕生的唯一心愿",艾克说道。

这个想法雄心勃勃却略显稚嫩。那时道格拉斯·艾克就读于离家不远的布卢明顿的印第安纳大学,他把这个想法抛给了认知科学家道格拉斯·郝夫斯台特(Douglas Hofstadter),其研究意识与机器间关系的著作《哥德尔、埃舍尔、巴赫:集异璧之大成》(Gödel, Escher, Bach: an Eternal Golden Braid)还获得了普利策奖。却不曾想郝夫斯台特迎面给他浇了一盆冷水,坚称当前即使是最先进的人工智能技术也远远不够成熟。但在接下来的二十年里,在科研一线工作的艾克孜孜不倦地坚持着自己的想法,最终,人工智能发展水平赶上了他的野心。

去年春天,在 Google做了几年的研究工作之后,艾克又重新拾起了多年前曾向郝夫斯台特提起过的想法。这一想法付诸实践后便有了Project Magenta的诞生。谷歌研究团队不仅让这些开发出来的机器人学会了如何制作独特的音乐,还能使它们创作出包括素描,皇冠备用网址,视频甚至笑话在内的多重艺术形式。继在智能手机、应用软件和互联网服务等多项领域称霸后,谷歌又在着手开发通信业务,艾克则将Magenta视为这项业务自然而然的衍生物。

"这为人们创造了全新的沟通方式,"最近在谷歌人工智能研究总部接受的一次采访中,艾克这样说道。

该项目一方面也为利用人工智能技术创作艺术作品的实现作出了不懈努力,而人工智能也只是近些年来才趋向成熟的一门技术。所谓深度神经网络(deep neural network)就是利用分析大数据来学习特定的行为的一种复杂数学系统。例如,通过在数以百万计的自行车照片寻找其共同的模型与款式,由此来学会如何识别自行车。这就是社交软件Facebook识别在线照片中的面孔所应用到的原理,安卓手机能够识别口头指令,以及微软的通讯软件Skype的翻译功能同样依赖于这项技术。不过这些复杂的系统同样也可以创造艺术。例如,通过分析一组歌曲,它们可以学习如何制作类似的声音。

正如艾克所说,要想使得机器能做制作出一首,或者夸张地说,乃至数万亿首的披头士乐队的新曲,而且每首听起来既像是甲壳虫乐队自己录制的音乐,又与其有些许差异,距离这个结果的达成仍要数年的时间,但至少这些系统已经在向这个方向靠拢了。不过这种创作方式虽说创造出了艺术,但最终从某种意义上来说又渐渐地瓦解了艺术,这样的结果并不是他所追求的。除了模仿之外,还有很多其他的创作途径值得探索。人工智能最终的理念不是取代艺术家,而是为他们提供工具,让他们以全新的方式去创造艺术。

二十世纪九十年代,艾克在新墨西哥州的小酒馆里将Johnny Rotten and Johnny Cash的音乐糅合在了一起;现在,他正在构建可以实现相似效果的软件。利用神经网络,他和他的团队把从各个乐器(比如像巴松管和古钢琴的结合)中提取出的声音混合在一起制造出人们闻所未闻的声音。

另一幅利用“DeepDream”创作出的作品。“DeepDream”可以利用神经网络把一幅现成的照片生成为诸多的抽象图片。

就如同通过分析上百张猫的照片来学习如何识别猫一样,神经网络也可以通过分析数以百计的音符来学习巴松管的音乐特性,其可通过创建数学表达式,或者说一系列矢量以识别巴松管。由此,艾克和他的团队已经将上百件乐器的发出的音符输入了该神经网络,为每一门乐器都建立一个特定的矢量。现在,只需在屏幕上动动按钮,它们就可以结合部分矢量从而创造出全新的乐器:可能这门乐器发出的音色47%来自巴松管和53%来自古钢琴,另一门乐器则是将这个比例颠倒了过来,以此类推。

打印此文】 【关闭窗口】【返回顶部】 [
相关文章
推荐文章
最新图文



Copyright © bet36 版权所有